Bunch filling schemes for early

running scenarios

M. Ferro-Luzzi and W. Herr

Issues for bunch filling scheme:

- LHC collider issues:
 - **Luminosity**
 - > Experimental conditions
 - Beam-beam effects
 - > Other collective effects
 - Diagnostics
 - **>**
- Injector chain (input from Elias, Gianluigi)

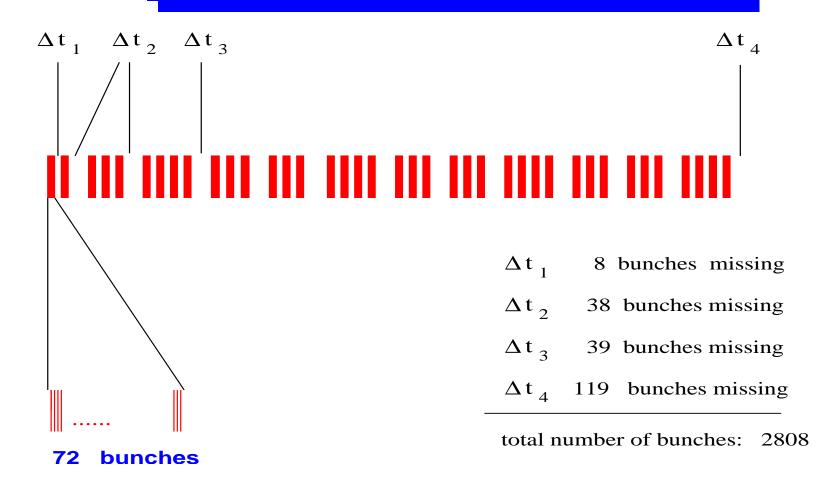
Luminosity considerations - reminder

- proton-proton operation:
 - > ATLAS and CMS: maximum integrated luminosity
 - ightharpoonup LHCb: $\mathcal{L}_{opt} = 2 5 \cdot 10^{32} \; \mathrm{cm}^{-2} \; \mathrm{s}^{-1}$
 - \rightarrow ALICE: $\mathcal{L}_{opt} = 1 \cdot 10^{29} \; \mathrm{cm}^{-2} \; \mathrm{s}^{-1}$
 - Requires reduction even for small number of bunches (43)!

Filling schemes versus beam-beam effects

- Aim: minimize bunch-to-bunch variations (orbit, tune, chromaticity ..)
- Try to maintain a "quasi" 4-fold symmetry
- Minimize number of different classes of bunches (i.e. number of interactions, strength of interactions)
- > Allow (passive) compensation of PACMAN effects

Present LHC filling scheme (25 ns):


Present scheme for high (nominal) luminosity with 25 ns spacing, with 72 bunches per batch

Usually presented as:

$$[2*(72b+8e)+30e] + [3*(72b+8e)+30e)] + [4*(72b+8e)+31e] + 3*\{2*[3*(72b+8e)+30e] + [4*(72b+8e)+31e]\} + 80e = 3564$$

- Total 2808 bunches (b), 756 empty spaces (e)
- Batches of 72 bunches, trains of 2,3,4 batches in SPS
- Requires 12 SPS/LHC transfers per beam

Present LHC filling scheme (25 ns):

Beam-beam considerations

- LHC is machine with many bunches, this dominates beam-beam effects
- Exact collision schedule needed for all studies
- Self-consistent beam-beam and luminosity computations:
 - > Orbits, tune, chromaticity, ... (for each bunch)
 - Coherent motion, measurement response
 - > Luminosity optimization
- Needs more appropriate, flexible description (asymmetries, missing bunches, fluctuations ...)

Filling scheme description

We have 35640 buckets \longrightarrow 3564 slots for bunches spaced by 25 ns

How we count:

numbering of bunches according to slot number (or equivalent: bucket number), for any spacing

E.g. 43-bunch scheme:

(82, 163, 244, ...)

Filling scheme description

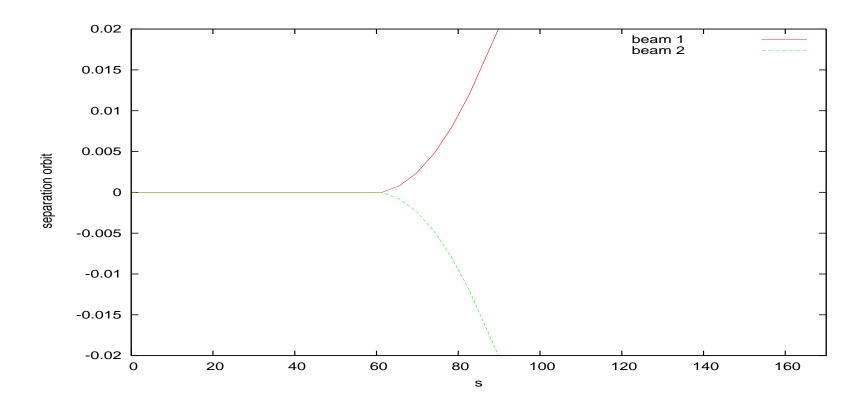
is constructed from some input like (nominal, see e.g. LHC Project Note 344 (2004)):

```
72 0 8 0 72 1 8 0 72 1 8 0 30 0 0 0 72 1 8 0 72 1 8 0 30 0 0 0 0 72 1 8 0 72 1 8 0 30 0 0 0 0 72 1 8 0 72 1 8 0 72 1 39 0 72 1 8 0 72 1 8 0 72 1 8 0 30 0 0 0 72 1 8 0 72 1 8 0 72 1 8 0 30 0 0 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 39 0 72 1 8 0 72 1 8 0 72 1 8 0 30 0 0 0 0 72 1 8 0 72 1 8 0 72 1 8 0 30 0 0 0 0 72 1 8 0 72 1 8 0 72 1 8 0 30 0 0 0 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 39 0 72 1 8 0 72 1 8 0 72 1 8 0 30 0 0 0 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 30 0 0 0 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 30 0 0 0 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 30 0 0 0 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0 72 1 8 0
```

can be different for the two beams

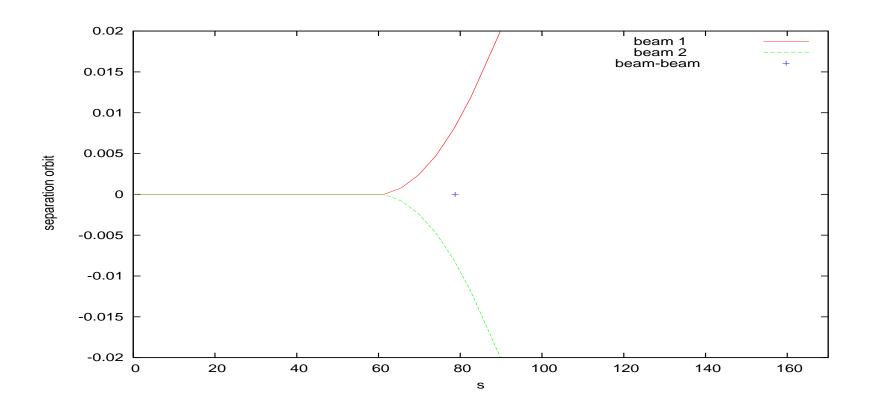
Collision schedules

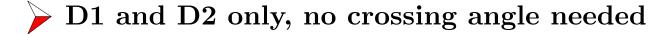
For 8-fold symmetry: 445.5 slots between interactions points!


In IP1, IP5 and IP8: collisions of even-even and odd-odd (slots) In IP2 (... and DELPHI): collisions of odd-even and even-odd

 \rightarrow for any bunch spacing \neq 25 ns \rightarrow watch out !

The interesting configurations


- Consider protons only:
 - Nominal 25 ns spacing no trouble
 - For 43 or 156 bunches, optimized for IP1, IP2 and IP5
 - For 75 ns spacing get good collision rate in all IPs (too much for IP2?)
 - For 50 ns spacing watch out for IP2 and IP8
- What about crossing schemes?


Beam separation scheme (e.g. right of IP5):

 \triangleright Beam orbits with D1 (\approx 60 m) and D2 (\approx 160 m) only

Beam separation scheme (525 ns, 156 Bunches):

Collisions in LHC experiments - numerology

Nominal bunch filling scheme with 25 ns spacing

	collisions
collisions in IP1	2808
collisions in IP2	2736
collisions in IP5	2808
collisions in IP8	2622

Collisions in LHC experiments - numerology

Collisions in IPs with 43 (44) equidistant bunches

	collisions
collisions in IP1	43
collisions in IP2	42
collisions in IP5	43
collisions in IP8	0
collisions in DELPHI	42

How to collide in LHCb?

- \triangleright Have to displace N_s bunches of the N_b bunches
 - > IP1,IP5: collide regular-regular, displaced-displaced
 - > IP2: collide regular-regular
 - > IP8: collide regular-displaced
- > Two strategies:
 - Displace bunches in one beam
 - Displace bunches in both beams symmetrically
- **Assumptions:**
 - Can shift PS to SPS injection (one batch)
 - Can shift SPS to LHC injection (2, 3 or 4 batches)
 - Can replace SPS to LHC injection by single bunch

How to collide in LHCb?

- \triangleright Have to displace N_s bunches of the N_b bunches
 - > IP1,IP5: collide regular-regular, displaced-displaced
 - > IP2: collide regular-regular
 - > IP8: collide regular-displaced
- > Two strategies:
 - > Displace bunches in one beam
 - Displace bunches in both beams symmetrically
- **Assumptions:**
 - Can shift PS to SPS injection (one batch)
 - Can shift SPS to LHC injection (2, 3 or 4 batches)
 - Can replace SPS to LHC injection by single bunch

How to collide in LHCb?

- Two strategies:
 - > Displace bunches in one beam
 - loss of collisions in IP1, IP5 and IP2, possibly other side effects
 - Displace bunches in both beams symmetrically
 - → still collide in IP1, IP5, additional losses in IP2
- Theoretical maximum for equidistant bunches: $N_b/2$
- For 43 bunches can shift up to 22 (6 SPS to LHC injections)
- In LHCb: 21 collisions, but 0 in ALICE

Collisions in LHCb - numerology

Collisions in IPs with 43 equidistant bunches, different displacement strategies

displaced	0	4 (asym)	4 (sym)	11 (sym)	19 (sym)
IP1	43	39	43	43	43
IP2	42	38	34	21	4
IP5	43	39	43	43	43
IP8	0	4	4	11	19

Consider displacement of both beams from now on

Collisions in LHCb - numerology

Bunch filling scheme with 156 bunches

	no bunches	option 1	option 2
	displaced		
collisions in IP1	156	156	156
collisions in IP2	152	76	16
collisions in IP5	156	156	156
collisions in IP8	0	36	68

Bunch spacing 50 ns

- Advantage: high luminosity, much fewer long range interactions
- Interesting if desired collision rate in IP2 very small
- Constructing 50 ns spacing from nominal scheme:
 - > Start from nominal 25 ns spacing
 - Remove every second bunch of a train, keep first bunch (no collisions in IP8)
 - > Shift selected trains (SPS/LHC transfers) by 1 slot to get desired sharing between IP2 and IP8

LHCb collision options:

- a) No shift
- b) Shift SPS/LHC transfers 4 6
- c) Shift SPS/LHC transfers 4 6, 10 12
- d) Shift SPS/LHC transfers 1 3, 7 9
- e) Shift SPS/LHC transfers 2 3, 7 9, replace transfer 1 by one single bunch

Numerology of collisions

Bunch filling scheme with 50 ns spacing

	a	b	c	d	e
IP1	1404	1404	1404	1404	1333
IP2	1368	684	0	72	$oxed{2}$
IP5	1404	1404	1404	1404	1333
DELPHI	1368	684	0	72	$oxed{2}$
IP8	0	655	1035	1242	1173

Summary and recommendations

- Without crossing angle: optimize collision rate in IP1 and IP5 by symmetric displacement in both beams, sharing between IP2 and IP8 can be largely adjusted.
- > valid for 43 and 156 (54) bunches options
- In case $\mathcal{L}(IP2)$ low: modified 50 ns scheme is a good alternative to 75 ns scheme