AC-Dipole

S. Fartoukh and R. Tomas, LHCCWG 10/04/2007

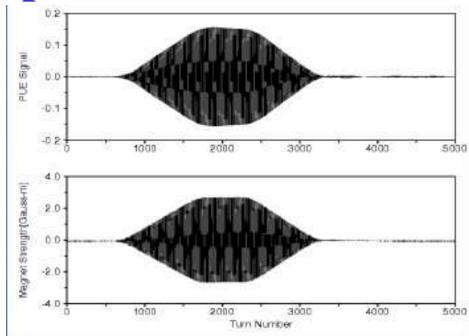
- Basic Principles
- Aperture measurement
- Linear optics measurement (e.g. β-beating and coupling).
- Measurement of non-linear driving terms
- Emittance preservation and ramping-up/down adiabaticity conditions
- Summary

Basic Principles (1/2)

- **AC-dipole**: a dipole magnet with an oscillating field at a (more or less) tunable frequency Q_D , close (but not too close!) to the beam eigen-frequency Q_v or $1-Q_v$:
 - \rightarrow AC –dipole excitation at abscissa s=0: $\Delta y'(n)[\sigma_{beam}] \equiv A_D \times \sin(2\pi Q_D n + \varphi_D)$ (1)
 - ⇒ Beam response at abscissa s: $\frac{y(n;s)}{\sqrt{\varepsilon\beta_y(s)}} \approx \frac{A_D}{4\pi(Q_D Q_y)} \times \sin(Q_D n + \phi_D + \mu_y(s))$ (2) (assuming perfectly linear machine w/o coupling)
- \rightarrow Allows to achieve **long-lasting coherent oscillations** with amplitude proportional to the AC-dipole amplitude $A_D[\sigma_{\text{beam}}]$ and inversely proportional to the distance $\delta Q = Q_D Q_v$ in the frequency domain.

Basic Principles (2/2)

• Technique first developed in the Brookhaven AGS (M. Bai et al.) and tested in the CERN SPS using the transverse damper:



AC-dipole driven oscillation in RHIC

Advantages w.r.t. the kick method:

- 1. Long-lasting oscillations of sizeable and tunable amplitude in spite of tune spread (but provided strong enough AC excitation amplitude)
- 2. To some extent (see later), **non-destructive technique in terms of emittance preservation** provided the ac excitation can be ramp up and down adiabatically.

Aperture measurement

- The fast method by **kicking the beam** was already discussed by Stefano (at the 11th LHCCWG)
 - → Main drawbacks (playing the evil advocate!):
 - 2. Apply "blindly" large kicks up to some signal in BLMor magnet quenches!
 - 3. Need to refill after each kick (due to the induced emittance growth) to re-measure (e.g. off-momentum at $\delta = \pm 1.5 \ 10^{-3}$) and eventually re-optimized the orbit.

• With **the AC-dipole**,

- 1. One can in principle excite safely the beam, e.g.
 - by increasing slowly the ac excitation amplitude at constant tune,
 - or changing the tune (to put it closer to the ac frequency) at constant excitation amplitude (see Eq. 2).
- 2. a priori **no need to refill** after each aperture measurement, e.g. using the same beam for off-momentum scan and/or optimizing the closed orbit at critical locations.
- 3. one can even **measure in parallel and possibly correct the beta-functions** (see hereafter).

Linear Optics measurement (1/4)

B-function and phase advances

- → Exciting in one transverse plane, say vertically:
- → Looking at the beam signal FFT at the excitation frequency Q_D :
- → The betatron phase advance between BMP i and BPM j is given by
- \rightarrow The beta-function at BPM number i is known within a multiplicative constant

$$\Rightarrow \text{With K given by } \mathbf{K} = \underbrace{y_D \sqrt{\beta(s=0)}}_{N \approx 1} \underbrace{1 \quad \sum_{j=0}^{N_{BPM}} \left[\hat{y}(Q_D; s_j) \right]^2}_{N \approx 1}$$

Assuming a perfectly linear machine but with linear coupling, the AC-dipole theory can be extended in 4 D (S. Fartoukh SL-Report 2002-059 and LPR 644):

$$\begin{cases} \hat{x}(Q_D; s) \equiv \frac{1}{N} \sum_{n=0}^{N-1} x(n; s) \exp(-2i\pi Q_D n) \\ \hat{y}(Q_D; s) \equiv \frac{1}{N} \sum_{n=0}^{N-1} x(n; s) \exp(-2i\pi Q_D n) \end{cases}$$

 $\Delta y'(n)[rad] \equiv y'_D \times \sin(2\pi Q_D n + \varphi_D)$

$$\mu_{y}(s_{j}) - \mu_{y}(s_{i}) \equiv \operatorname{Arg}\left[\frac{\hat{y}(Q_{D}; s_{j})}{\hat{y}(Q_{D}; s_{i})}\right]$$

$$\beta_{y}(s_{i}) = \frac{\left|\hat{y}(Q_{D}; s_{i})\right|^{2}}{\mathbf{K}^{2}}$$
(the approximation for **K** is only valid when

 $\Rightarrow \text{With K given by } \mathbf{K} = \frac{y_D \sqrt{\beta(s=0)}}{8 \left| \sin(\pi(Q_D - Q_v)) \right|^2} \approx \sqrt{\frac{1}{N_{BPM}}} \sum_{j=1}^{N_{BPM}} \frac{|\hat{y}(Q_D; s_j)|^2}{\beta_v^{(0)}(s_j)}$ (the approximation for **K** is only valid there is no **systematic** β-beating w.r.t. the popular R function popular R(0).) the nominal β -function, namely $\beta^{(0)}$). → This technique has an intrinsic measurement error of the order of

 $\varepsilon = \frac{\Delta \beta_y}{\beta_y} \approx \frac{\sin(\pi (Q_D - Q_y))}{\sin(\pi (Q_D + Q_y))} \approx 3 - 6\%$ for the LHC when exiting at 0.01 or 0.02 from the tune

(can be cured by a multi-carrier excitation on both sides of the betatron tune).

S. Fartoukh, R. Tomas LHCCWG 10/04/2007

Linear Optics measurement (2/4) Linear coupling

→ The beam signal FFT in the other plane contains the full information on linear coupling:

$$\hat{x}(Q_D;s) \approx \frac{\pi \, \mathbf{K} \, \sqrt{\beta_x(s)} \, e^{i\varphi_D + i\mu_x(s) + i\pi(Q_x - Q_y)}}{2 \sin(\pi(Q_D - Q_x))} \times C_-(Q_x - Q_D;s)$$
with $C_-(q;s) \equiv \underbrace{c_-}_{\text{usual coupling coefficient (closest tune approach)}} - \frac{i}{\pi} \, e^{-i\pi q} \, \sin(\pi \, q) \underbrace{\int\limits_0^s ds' \, K_{skew}(s') \, \sqrt{\beta_x \beta_y} \, e^{i(\mu_x - \mu_y)}}_{\text{contribution of the coupling sources from the AC-dipole to the observation point}} \approx c_-$

 \rightarrow Note that determining the phase of c_. implies the knowledge of the phase ϕ_D of the AC-excitation with respect to the beam at turn n=0 (starting point for the FFT, see Eq. (1)).

→ This technique has an intrinsic measurement error of the order of

$$\varepsilon = \frac{\Delta |C_-|}{|C_-|} \approx \frac{\sin(\pi (Q_D - Q_x))}{\sin(\pi (Q_D + Q_x))} \approx 5\% \text{ for the LHC when exciting exactly in between } Q_x \text{ and } Q_y.$$

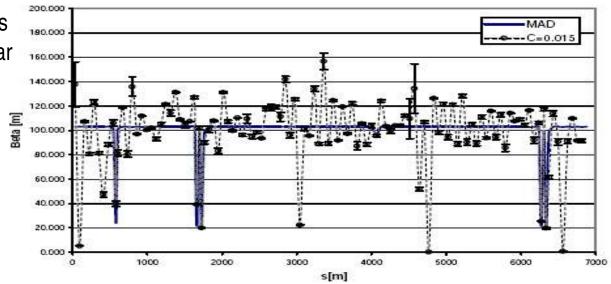
(can be cured by a multi-carrier excitation, say above Q_y and below Q_x with, as a side product the combined measurement of the sum coupling coefficient, see SL-Report 2002-059)

Correction is guaranteed

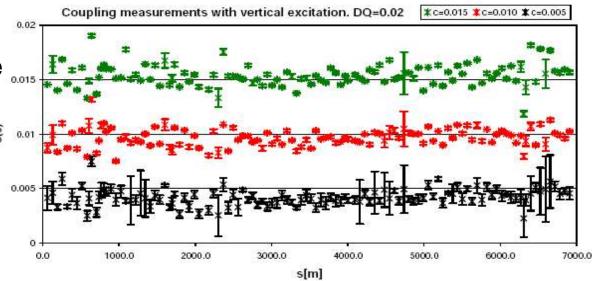
Linear Optics measurement (3/4)

SPS MD

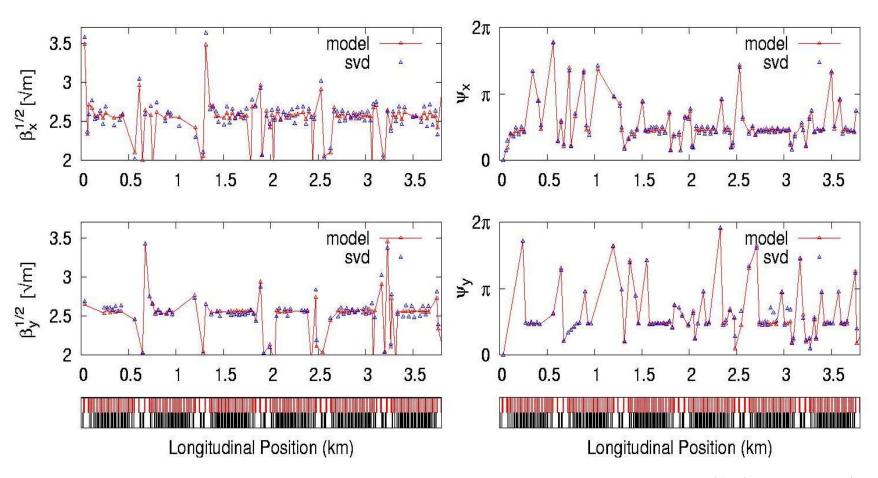
Measurement of the beta-functions in the SPS in the presence of linear coupling (lc-l=0.015).



Measurement of the modulus of C-(q;s) for different skew quadrupole settings.

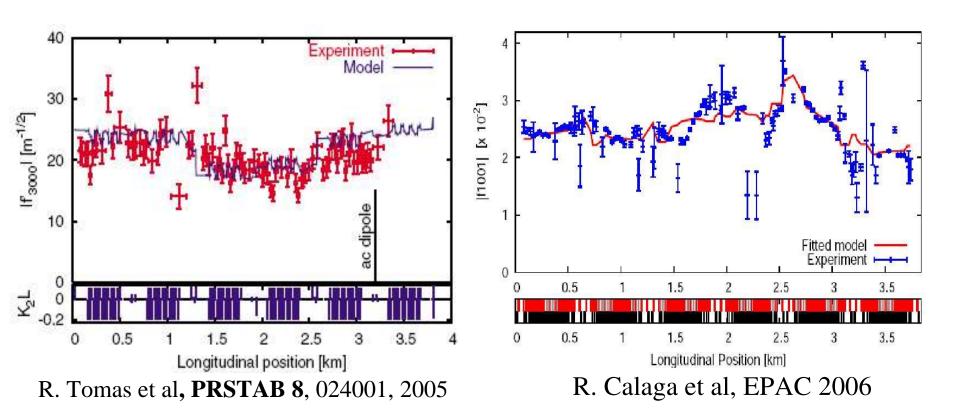


Linear Optics measurement (4/4) RHIC



R. Calaga et al

Resonance driving terms in RHIC



Sextupolar and coupling resonance terms measured in RHIC with AC dipoles

Emittance preservation

In presence of chromaticity, emittance blow up is given by:

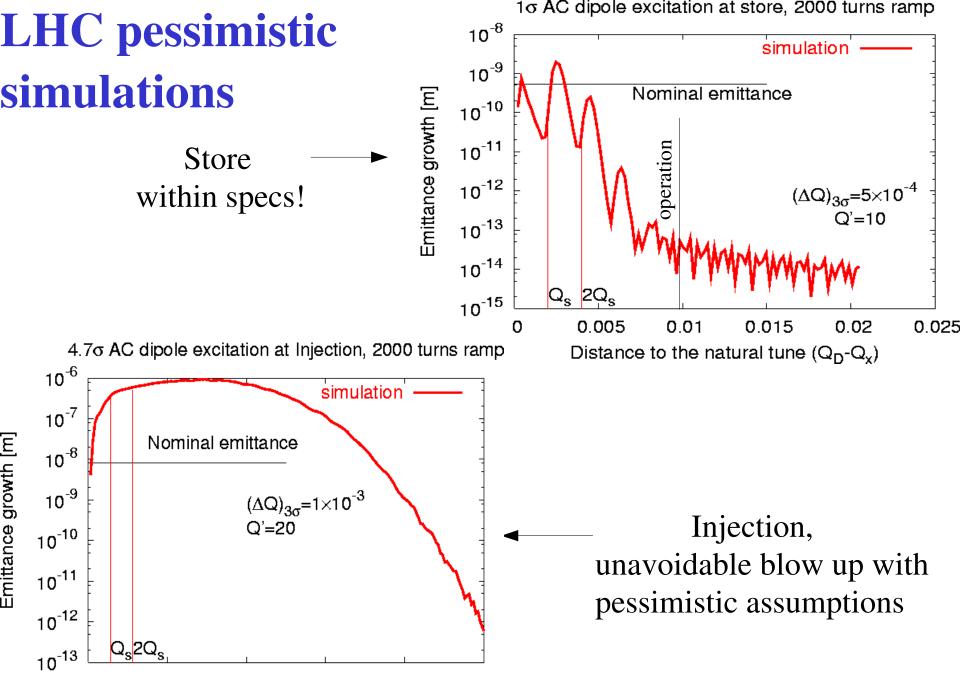
$$\Delta \epsilon_x = \frac{k^{(n)^2}}{2n^2} \sum_{q=-\infty}^{\infty} e^{-\varsigma^2} I_q(\varsigma^2) \frac{\sin^2(\pi Q_{q-}n)}{16\sin^4(\pi Q_{q-})}$$
R. Tomas, **PRSTAB 8**, 024401 (2005)

Ramp turn number

Distance to sideband q

In presence of amplitude detuning excitation within the bunch frequency spectrum is forbidden (including resonances)

Rule of thumb: Excite after Q'/2 sidebands (dist > Q'/2*Qs)



0.1

0.02

0.04

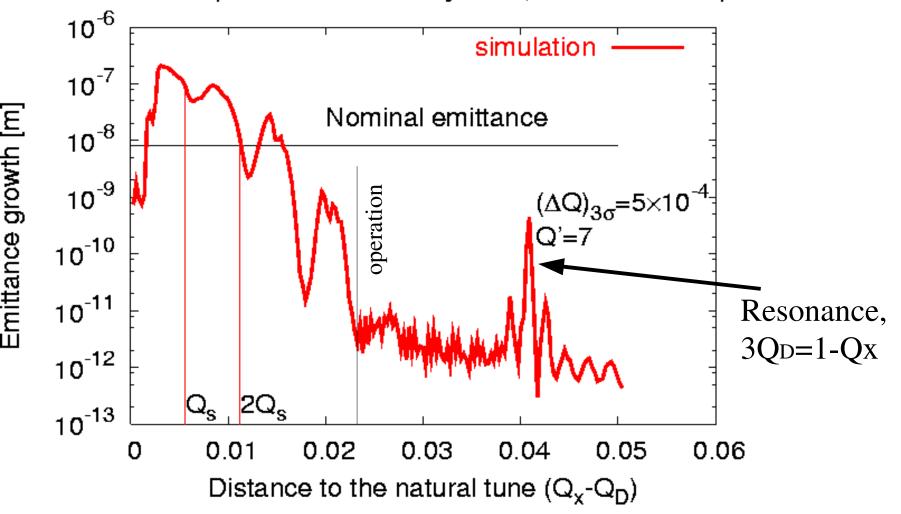
Distance to the natural tune (QD-Qx)

0.06

0.08

LHC injection simulations

7σ AC dipole excitation at Injection, 2000 turns ramp



7sigma oscillations at injection require Q'<7 and avoiding amplitude detuning and resonances

Summary

- AC-dipole has been demonstrated to induce **long-lasting coherent oscillations** without emittance growth.
- Powerful instrument for commissioning the LHC. Measure and optimize **the mechanical aperture** (or golden orbit).
- Very useful for optics: beta-functions, phase advance, linear coupling and non-linear resonance driving terms. At injection control of chromaticity is required.
- Other applications can be envisaged **for Q' and dQ/dJ measurement** but still to be benchmarked by MDs and requesting a sizeable improvement of the measurement system: measurement of head-tail phase shift inside the bunch with tiny ac-excitation at the betatron tune (see S. Fartoukh, LPR986)