Alternative bunch filling scheme

for the LHC

G. Arduini, W. Herr, E. Métral, T. Pieloni

Present LHC filling scheme (25 ns):

Present scheme for high (nominal) luminosity with 25 ns spacing, with 72 bunches per batch

```
\{[(72b + 8e) * 2 + 30e] + [(72b + 8e) * 3 + 30e] + [(72b + 8e) * 4 + 31e]\}
\{[(72b + 8e) * 3 + 30e] + [(72b + 8e) * 3 + 30e] + [(72b + 8e) * 4 + 31e]\} * 3
+ \{80e\} = 3564
```

- 39 batches with 72 bunches each
- 12 SPS supercycles
- Total: 2808 bunches (b), 756 empty spaces (e)

Present LHC filling scheme (25 ns):

Present LHC filling scheme (25 ns):

Present scheme for high (nominal) luminosity with 25 ns spacing, with 72 bunches per batch

```
\{[(72b + 8e) * 2 + 30e] + [(72b + 8e) * 3 + 30e] + [(72b + 8e) * 4 + 31e]\}
\{[(72b + 8e) * 3 + 30e] + [(72b + 8e) * 3 + 30e] + [(72b + 8e) * 4 + 31e]\} * 3
+ \{80e\} = 3564
```

- Total 2808 bunches (b), 756 empty spaces (e)
- SPS injection kicker: 8 missing bunches, 0.225 μ s.
- LHC injection kicker: 38/39 missing bunches, $0.975~\mu s$.
- Abort gap: 119 missing bunches, 3 μ s.

Why alternatives?

- In 2004: 4 batches of 72 bunches were transferred from PS to SPS
- Recently with 72 bunches instability was observed in PS (probably understood)
- Transferring 48 bunches was never a problem
- → Elias for details ...
- → Evaluate what can be done with 48 bunches per batch (for nominal beam, not ultimate, not ions)

Requirements for any filling scheme:

- keep injection and abort gaps at least as large
- maintain four-fold symmetry (for beam-beam)
- in SPS: keep $N_{tot} \leq 4 \cdot 10^{13}$
- last injection should be longest duration (synchronization of beam dump)
- maximize number of bunches (rather: collisions)

Alternative LHC filling schemes:

Our proposal with 48 bunches per batch:

$$\{[(48b + 9e) * 2 + 31e] * 1 + [(48b + 9e) * 5 + 31e] * 2\}$$

$$+ \{[(48b + 9e) * 4 + 31e] * 1 + [(48b + 9e) * 5 + 31e] * 2\} * 3$$

$$+ \{114e\} = 3564$$

- Total 2592 (old: 2808) bunches ($\approx 8~\%~ \mathrm{less}$)
- SPS injection: 9 (old: 8) missing bunches, 0.25 μ s.
- LHC injection: 40 (old: 38/39) missing bunches, $1.025~\mu s.$
- Abort gap: 154 (old: 119) missing bunches, 3.875 μ s.

Proposed LHC filling scheme (25 ns):

Some features:

- Same number of SPS supercyles (12)
- 54 batches of 48 bunches
- Lower maximum intensity per LHC injection $(pprox 17\% ext{ lower})$
- All gaps slightly larger than in nominal scheme
- Significantly larger abort gap $(3.875~\mu s)$

Implications for luminosity performance

- Slightly reduced number of collisions (luminosity):
 - ightharpoonup 2808 ightharpoonup 2592 in IP1 and IP5 (8 %)
 - ightharpoonup 2736 ightharpoonup 2496 in IP2 (protons) (9 %)
 - $ightharpoonup 2622
 ightharpoonup 2340 ext{ in IP8 } (11 \%)$
- Increased effect in IP2 and IP8 due to larger abort gap
- Is this reduction relevant? (fluctuations etc.)

beam-beam and PACMAN numerology

	nominal	alternative
1 head-on collision missed	252	336
2 head-on collisions missed	3	6
min. number of long range	45	45
max. number of long range	120	120

- Fewer head on collisions in IP 2 and 8 (only)
- No change for long range interactions
- No additional problems expected

Implications for PS and SPS

PS and SPS cycles, e-cloud, filling time ...

→ Elias for details

Operation without crossing angle

Without crossing angle: completely safe bunch distance is 600 ns

$$\{[(1b + 56e) * 2 + 31e] * 1 + [(1b + 56e) * 5 + 31e] * 2\}$$

$$+ \{[(1b + 56e) * 4 + 31e] * 1 + [(1b + 56e) * 5 + 31e] * 2\} * 3$$

$$+ \{114e\} = 3564$$

- Derived from 48 bunch scheme:
 - 1 batch = 1 bunch \rightarrow 54 bunches
- Difference to 43 bunch scheme: not equidistant

Collisions in LHCb

- With 54 bunches: collisions in IP8 require longitudinal displacement of some bunches by 75 ns
- Two options:
 - Displace bunches in one beam only
 - Displace bunches symmetrically in both beams
 - Assume 5 displaced bunches →

Collisions in LHCb - numerology

	no bunches	displaced	displaced
	${f displaced}$	in one beam	in both beams
collisions in IP1	54	49	54
collisions in IP2	52	47	42
collisions in IP5	54	49	54
collisions in IP8	0	5	5

Summary

- Good alternative when 72 bunches per batch are difficult
- Almost the same luminosity
- Operational implications in PS/SPS → Elias
- Possibly interesting step on the way to 72 bunches