Commissioning the ramp

- Baseline
- Magnets
 - Main circuits
 - Harmonic correction
 - Decay and snapback
- Power Converters
- Collimators
- Beam Instrumentation
- Etc.

Nominal cycle

Settings Generation

- Main stuff
 - Transfer Functions
 - DC error components
 - Geometric
 - DC magnetization
 - Saturation
 - Residual

Steady state, reproducible from cycle to cycle, depending only on current

- MAD strengths
- Optics parameters

FiDeL: Harmonics

$$c_{m}^{geometric} = \gamma_{m} I$$

$$c_{m}^{MDC} = \mu_{m} I_{inj} \left(\frac{I}{I_{inj}}\right)^{p_{m}} \left(\frac{I_{c} - I}{I_{c} - I_{inj}}\right)^{q_{m}} \left(\frac{T_{co}^{1.7} - T^{1.7}}{T_{co}^{1.7} - T_{meas}^{1.7}}\right)^{m_{m}}$$

$$c_m^{saturation} = \sum_{i=1}^{N} \sigma_m^i I \sum (I, S_m^i, I_{0m}^i, I_{nom})$$

$$\Sigma(I, S_m, I_{0m}, I_{nom}) = \frac{1}{\pi} \operatorname{atan}\left(S\left(\frac{I - I_0}{I_{nom}}\right)\right) + \frac{1}{2}$$

$$c_m^{residual} = \rho_m I \left(\frac{I_{inj}}{I}\right)^{r_n}$$

Coofficient		Value							
Coefficient	TF	b2	a2	b3	a3	b4	b5	Component	
γ	10.119	0.142	-0.040	5.276	-0.236	0.004	0.245	geometric	
μ	-0.005	0.154	-0.031	-7.466	0.026	-0.002	0.931		
р	1.11	1.54	1.46	0.63	1.11	-1.28	0.12	magnetisation	
9	-0.29	0.96	11.52	0.55	0.98	0.57	-0.39	Inagrietisation	
т	2	2	2	2	2	2	2		
σ^1	0.247	-3.241	-0.118	-0.095	-0.008	0.207	-0.142		
I_0^1	10739	8569	11090	7224	10256	10056	9214		
S ¹	1.691	8.088	32.181	9.760	10.453	12.985	8.150	saturation	
σ^2	-0.545	20.131		0.347				Saturation	
I_{0}^{2}	13599	14107		11031					
S^2	3.230	25.551		16.923					
ρ	0.003	-0.182	-0.008	0.340	-0.018	-0.011	0.126	residual	
r	1.86	1.95	2.82	10.00	2.52	1.36	2.85	residual	

LHCCWG

Generate Transfer Functions - Implementation

HW_NAME	C	OMPONEN	IT_NAME	COEFFICIENT_	NAME	COEFFICIEN	L_VALUE				
MB.A78	Т	F		gamma			10.119				
MB.A78	Т	F		mu			-0.005				
MB.A78	Т	F		р			1.11				
MB.A78	Т	F		q			-0.29				
MB.A78	Т	F		m			2				
MB.A78	Т	F		sigma_1			0.247				
MB.A78	Т	F		S_1			1.691				
MB.A78	Т	F		10_1			10739				
MB.A78	Т	F	CALIBRAT	ION NAME		B FIELD	0 5/5	ה			
MB.A78		-	MB.A78			7.688806312	760)			
MB.A78 //	DC Magne	etisation	MB.A78			8.699903331	860)			
MB.A78			MB.A78			9.711037605	960)			
MB.A78	double get	tBMDC(do	MB.A78								
MB.A78			MB.A78	140							
MB.A78	double m	ndc = mu [•]	MB.A78	100							
MB.A78	* M		MB.A78	120							
MB.A78	/		MB.A78	100		0.01013					
MB.A78	· _	MDC	MB.A78								
	roturn B	=	MB.A78	80	0	0.01012					
		т	MB.A78	m		0.01011		*****			
]	}		MB.A78	u 60							
			MB.A78	00		0.0101					
			MB.A78	40		0.01009					
			MB.A78			04000					
			MB.A78	20		0.01008				- <u>\</u>	
			MB.A78		0	0.01007					
			MB.A78	0		01006					
			MB.A78	0 20	000	.01008					
					0	0.01005					
						01001					X
			MB A78		- '			$ $ \top			►
			MB A78		_ 0	0.01003					
					_	0 2	2000 40	600	0 8000	10000 1	12000 14000
								C	urrent [A]		

Ramp

📥 Parameter exp	lorer			_ 🗆 ×
💿 LHC 🔗				
Particle Transfers	Parameter selection - LHCRING			
LHCB2Injection	System	Туре	Parameter	
LHCRING		A 1	RB.A12/K	
LHC_FESA		IREF	RB.A23/K	1000
	I HCIN.IKICKERS	ĸ	RB.A34/K	2000
		MOMENTUM	RB.A45/K	
	MATCHING SECTION DIPOLE	b3	RB.A56/K	
	MOMENTIM		RB.A67/K	
	OCTUPOLE		RB.A78/K	
	ORBIT-H		DD LOLIV	
				JW Field(S)
Dependent para	meters			
RB.A78/K	→	PTE.UA83.RB.A78/IREF		
				er l
10000		RB.A78/03 RCS.A70	8BZ/K RCS.A78BZ/I RPMBB.UA83.RCS.A78BZ/IR	
-				

Ramp

LHCCWG

Ramp

LHCCWG

Commissioning ramp – zeroth order

- Design optics
- Fidel Transfer functions
- MB Fidel DC harmonics
- MB spool piece correction
- MQ Fidel DC harmonics
- MQ correction
- MQM, MQMC, MQML, MQTH, MQY, MQT, MQTL geometric and MDC
- Hum...

FIDEL AND MAD

• Also need to deal with hysteresis

Decay and Snapback

Integral Sextupole

Bottura & Sammut – Cham XIV

Decay

$$\Delta(t, t_{inj}, \tau, a^{\Delta}) = d\left(1 - e^{\frac{t - t_{inj}}{\tau}}\right) + (1 - d)\left(1 - e^{\frac{t - t_{inj}}{9\tau}}\right)$$

$$C_n^{decay} = \mathcal{S}_m \frac{\Delta(t, t_{inj}, \tau_m, d_m)}{\Delta(t_{inj}^{std}, t_{inj}, \tau_m, d_m)}$$
std – normalization parameters
$$E, T_0, T_1, \tau_T, P_0, P_1, \tau_P - \text{fitting parameters}$$

$$\mathcal{S} = \left(E \frac{I_{FT}}{I_{FT}^{std}}\right) \left(\frac{T_0 - T_1 e^{\frac{t_{FT}}{\tau_T}}}{T_0 - T_1 e^{\frac{t_{FT}}{\tau_T}}}\right) \left(\frac{P_0 + P_1 e^{-\frac{t_{PPParameter}}{\tau_P}}}{P_0 + P_1 e^{-\frac{t_{PPParameter}}{\tau_P}}}\right)$$
Output
MOP THIS UP IN LSA

 $I_{peparation}$

quench

preparation porch

pre-cycle

time

t preparation

 τ_P

 $t_{preparation}^{std}$ τ_P

Dynamic effects - correction

LHCCWG

Snapback – Q'

If b₃ amplitude can be measured "on-line" the SB fit can be predicted w/out use of "multi-parameter" algorithm

T(x) = T

• Fit snapback:

$$b_3^{snapback}(t) = \Delta b_3 e^{-\frac{I(t) - I_{injection}}{\Delta I}}$$

- I(t) MB current at time t
- I_{injection} injection value of current
- Δb_3 and ΔI are fitting constants
- Δb_3 and ΔI are correlated

Sextupole compensation during snap-back in collaboration with FNAL – Luca Bottura

e.g. Chromaticity

→ talk: L. Bottura

slow Q' measurements and b₃ corrections during injection

since Δb_3 and ΔI are correlated

RT corrections still possible

Power Converters

QK's FGCs

- The control system for the LHC power converters has dedicated controller embedded in every converter
 - function generation (current versus time)
 - current regulation
 - state monitoring and control (on, off, reset etc.)
- The same function generator module is also used in the RF systems
 - voltage & phase, frequency, radial position, power coupler position etc.

Power Converters

- Asynchronous PELPs
 - Setup, tests
- Synchronous TRIMs (CTRIM of LTRIM)
 - Discrete trims e.g. orbit corrections
- Time dependent functions [ramp, squeeze etc.]
 - Times are in seconds relative to the start of the table and the granularity is 100us.
 The first element of the time vector must always be zero and the times must always increase by a minimum of 2ms.
 - When arming the table, the first reference value must be within 0.01 A of the actual reference value for the table to be accepted.

The level of the reference and the rate of change of every segment will be checked against the appropriate I, V, dI/dt and dV/dt limits.

Linear interpolation of supplied points

- Real-time channel
 - Corrections up to 50 Hz
 - In parallel with time dependent functions

Triggered by timing or explicit command to FGC

Ramp implementation: functions & timing

- Ramp is driven by current, voltage and frequency as functions of time, pre-loaded to the power converters and RF
 - As an array of points (time, reference [absolute])
 - 100 μs granularity
 - Arbitrary time spacing
 - Linear interpolation of supplied points
 - Maximum 5000 point
- for all powering circuits 1700 power converters
 - mains, quads, triplets, insertions, spool pieces, orbit correctors...

Functions & timing (contd.)

- Execution of functions is triggered by a "start ramp" timing event
 - the operator decides when to ramp and requests the timing system to send the event
- The ramp stops naturally when the functions come to an end
 - not possible to stop while the functions are executing
 - a stop "during the ramp" means generating functions which stop at the desired time

RF

- Control acceleration through snapback
 - single bunch pilot, accelerate
 - dump at progressively higher energies
- Measure:
 - capture losses (flash loss of out-of-bucket beam at start of ramp)
 - continuous measurements of frequency response of loops during ramp
 - bunch length (emittance growth) injection mismatch, RF noise
 - beam losses
- Feed-forward of measured frequency offset
 - for eventual switch to synchro loop operation
- In preparation for physics beams:
 - Commissioning of programmed longitudinal emittance blowup via RF noise

RF

 Normally ramp with synchro loop (both rings locked to the same reference) to avoid a big re-phasing before physics, and to ensure correct crossing point for maximum separation for long-range beam-beam.

However, this requires an accurate frequency function derived from the true machine energy. So during commissioning we ramp with radial loop (i.e. fixed radial position, variable frequency) and we can feed forward the measured frequency corrections into the function.

- Download frequency function versus time
- Radial loop on (for commissioning only). In operation we remain on synchro-loop. Needs to be done after last injection and before start ramp
- At injection we use high synchro loop gain for accurate positioning of incoming beam in bucket. At top energy we use high phase loop gain to avoid emittance blowup.
- Vary the gain of the phase loop amplifier during the ramp
- Vary the gain and time constant of the synchronization loop amplifier during the ramp
- 400 MHz: 2 voltage functions per cavity through the ramp
- Transverse feedback not in the first instance

Beam - Tolerances – 450 GeV

	Commissioning	First Year	Nominal
Q	∆ Q ≈ ±0.03	∆ Q ≈ ±0.01	±3 × 10 ⁻³
Q'	> -15	∆Q'≈± 5	Q'≈2 ∆Q'≈± 1
Orbit	4 mm	4 mm	4 mm.
Momentum	± 2 × 10 ⁻⁴	± 2 × 10 ⁻⁴	± 10 ⁻⁴
Coupling	c- < 0.1	c- < 0.03	c- < 0.003
Beta beating	≈ 20% [static]	≈ 20%	20%

	Commissioning	First Year	Nominal
b1	± 2	< ± 1	≪ ± 1
b2 MB	± 0.2	± 0.03	± 0.01
b2 MQ	± 4	± 0.75	± 0.25
b3	± 0.5	± 0.15	± 0.02

Updated Table

	Energy [GeV]	Bun che s	Bunch Intensi ty	Total Intensity	τ min [h]	Max orbit (stat)[mm]	Max orbit (dyn) [mm]	Max δβ/β (stat) [%]	<mark>Max</mark> δβ/β (dyn) [%]	Apert ure [σ]	Collim ators	TC DQ	BLM s
pilot	450	1	5 e9	5 e9	?	?	?	?	?	?	All out	Out	Passiv e
	7000												
super pilot	450	1	3 e10	3 e10	?	?	?	?	?	?			
	7000												
interme diate	450	12	3 e10	3.6 e11	?	?	?	?	?	?			
	7000												
43x43 initial	450	43	1 e10	4.3 e11	?	?	?	?	?	?			
	7000												
43x43	450	43	3 e10	1.2 e12	?	?	?	?	?	?			
	7000												

Collimators

	Energy [GeV]	Bunc hes	Bunch Intensit y	Total Intensit y	Collimator s	TCDQ	TDI	BLMs
pilot	450	1	5 e9	5 e9	All out	Out	Out	Passi ve
	7000	1	5 e9	5 e9				
super pilot	450	1	3 e10	3 e10	All out	Out	Out	
	7000	1	3 e10	3 e10			-	
intermediate	450	12	3 e10	3.6 e11	$n_1 = 6$ $n_2 = out?$ $n_a = out?$ $n_3 = 30$	n _{tcdq} = 10	Out	
	7000	12	3 e10	3.6 e11			-	
43x43 initial	450	43	1 e10	4.3 e11	as above	as above	Out	
	7000						-	
43x43	450	43	3 e10	1.2 e12	$n_1 = 5.7$ $n_2 = 6.7$ $n_a = 10.0$ $n_3 = 30$	n _{tcdq} = 9	N _{tdi} = 6.8	
	7000						-	

LHCCWG

Measurements

- Orbit
 - Synched Acquisition & feedforward
 - GOFB ASAP
- PLL: Continuous Tune, Chromaticity & Coupling
 - High priority feedforward
- Tune feedback
- Coupling feedback

Question: Do we go all out for tune and coupling feedbacks?

If so, then this is the time to commission them

Coupling control is critical for orbit & tune feedbacks

Spending some time here to commission these systems early on may significantly reduce the time required for ramp development

Measurements

- Tracking
- Transfer Functions
- Chromaticity
 - RF modulation
 - Synch with orbit -> dispersion
 - Ramp different f_{rf}
- Beta beating
- Field errors optics intermediate energy?
- BLMs to beam interlock controller etc.
- Continuous emittance monitoring: synchrotron light

Feedback using the PLL tune system

- Tune feedback requirements
 - Stable PLL tune measurement system
 - Knowledge of correction quad transfer functions
 - already known from initial tune corrections
 - Implementation of feedback controller
- Coupling feedback requirements
 - Stable PLL tune measurement system
 - Knowledge of skew quad transfer functions
 - Implementation of feedback controller
- Chromaticity feedback requirements
 - Stable PLL tune measurement system
 - RF frequency modulation

All of these will require dedicated beam time for testing the control loop response and the final closing of the loop.

Rhodri Jones

Operations

Strategy – prepare ramp

- Prepare ramp
 - Snapback prediction incorporation into functions
 - 450 GeV trim incorporation [strategy?]
 - Load power converters
 - Load RF
 - Load collimators
 - Tune feedback [?]
 - Energy compensation with horizontal orbit correctors [?]
 - BLM thresholds up the ramp check
 - Experiments' dipole compensation not initially
 - Separation bumps not single beam
 - Crossing angle not initially
 - Arm data acquisition timing

Initial Commissioning – Nominal Cycle

- Pilots to start
- Relaxed tolerances on key beam parameters

- Cycle to cycle variations
 - pre-injection plateau length, length of time at injection
 - Wait 15-20 minutes on injection plateau before injecting
 - Limited further decay
- Indeterminate, and possibly long, time before ramping
- Nominal snapback
- Ramp to reduced energy...
- Recycle after every attempt

Stopping with beam in the ramp

Used for commissioning of beam dump, beam loss monitors, beam measurements, optics checks, physics...

- Must be programmed before starting the ramp
 - with appropriate round-off behaviour of the functions
 - Might need to handle decay after the stop
- Restart with beam is possible in theory, but problematic
 - requires a new set of functions to be loaded
 - including corrections for handling the associated snapback

Machine Protection

Normal quadrupole

