
450 GeV Initial Commissioning with Pilot Beam

Beam Instrumentation

LHCCWG

5th April 2006

Rhodri Jones (CERN – AB/BI)

- \rightarrow BLMs to beam interlock controller etc.
- → Continuous emittance monitoring: synchrotron light

BPM System at 450GeV

- Already commissioned (injection & first 200 turns)
 - \rightarrow acquisition chain
 - \rightarrow asynchronous mode
 - \rightarrow most polarity errors found during threading & first turn measurements

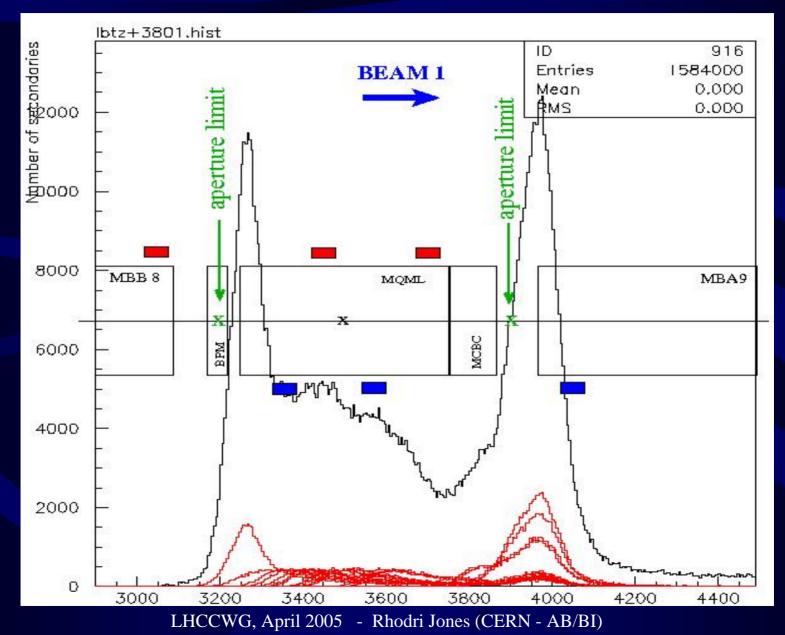
Steps after RF capture

- \rightarrow "time-in" the BPM system for bunch tagging
 - Set phase with respect to bunch for each monitor
 - Set turn clock with respect to end of dump gap for each monitor
 - is the pilot always in slot 1?
 - Requires BST
- \rightarrow start orbit acquisition at 10Hz
 - Verify coherence of orbit, multi-turn and post mortem data
- \rightarrow Estimate ~4hrs if all goes well!

BPM System at 450GeV

- Next Steps
 - \rightarrow calibrate the BPM system
 - All monitors & orbit correctors a la TI8
 - ~30secs per COD (530 CODs per plane)
 - ~9hrs for all
 - Accuracy will depend on accuracy of optics model!
 - Pre-requisite for orbit feedback
 - Finer calibration for interlock BPMs in LSS6 & BPMs at injection Pts.
 - Required to accurately set TCDQ etc.
 - \rightarrow First attempt at orbit feedback?
 - Required before we start to use collimators?
 - Controller tested without beam
 - Optimise closed loop gain (~1hr beam time)

BLM System at 450GeV


- Already Commissioned
 - \rightarrow Hardware functionality & detector availability
- First Adjustment of Thresholds
 - \rightarrow Initially set as factor 3 below estimated quench level at 450GeV
 - Based on
 - simulations
 - lab heating test measurements (SM18)
 - possible sector test data
 - Thresholds adjusted either on a
 - Quench & learn basis if too high
 - Dump & learn basis if too low
 - Threshold change procedure under discussion in MPWG

 \rightarrow At 450GeV fast loss damage level is factor 1000 above quench level

• No risk of damaging components

BLM Threshold Level Estimation

BCT System Commissioning

- Already commissioned
 - → BCTFR (fast BCT) response to single pass (injection) and circulating noncaptured beam
- Circulating beam at 450GeV
 - \rightarrow First check of DCCT response
 - \rightarrow Cross calibration between the 2 DCCTs & 2 BCTFRs
- Beam presence flag and beam safe flag for early running
 - \rightarrow Beam presence detected using simple comparator on BCTFR
 - \rightarrow Safe Beam flag derived 1Hz intensity measurements of BCTDC (software)
 - \rightarrow Commissioned at this stage
- Fast Beam Loss Rate Monitoring
 - \rightarrow MPWG require measurement of loss of 3-6.10¹¹ protons within a ms
 - \rightarrow BCTFR response will depend on % of bunch intensity lost
 - Loss of 3.10^{11} for 43 nominal bunches \Rightarrow 7% change in bunch intensity (OK)
 - Loss of 3.10^{11} for 2808 nominal bunches $\Rightarrow 0.1\%$ change (below noise limit)
 - \rightarrow NOT commissioned at this stage

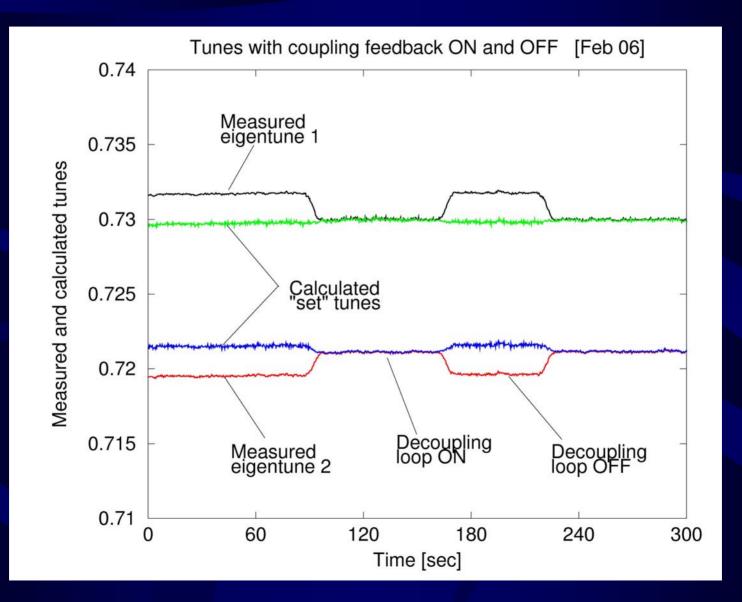
Early LHC BCT System Performance

Measurement	Beam type	Accuracy/	Fast BCT	DC BCT
Mode		Resolution	(BCTFR)	(BCTDC)
Injection	Pilot bunch	±20% / ±20%	$\pm 10^{9}$	N/A
			(OK)	
	Nominal	±3% / ±1%	$\pm 3.10^{9} / \pm 10^{9}$	N/A
	bunch		(OK)	
Circulating Beam (>200 turns)	Pilot bunch	±10% / ±10%	$\pm 0.5 \cdot 10^{9}$	1µA (on 10µA)
			(OK)	(resolution $\sim 2-10\mu A$)
	Nominal bunch	±1% / ±1%	±10 ⁹	2μA (on 180μA)
			(OK)	(limit for short int time)
	43 pilot bunches	±1% / ±1%	±10 ⁹	2μA (on 390μA)
			(OK)	(limit for short int time)
Lifetime	Pilot bunch	10% (10hrs/1min)	(OK)	N/A
	Nominal bunch	10% (30hrs/10sec)	(OK)	N/A

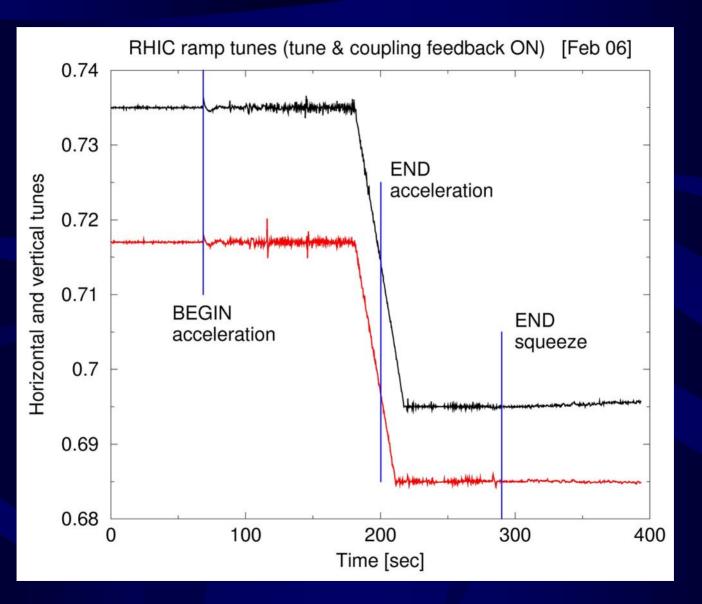
Tune, Chromaticity & Coupling

- Day 1 with kicked beams and classical motion analysis
 → Commission MKQ
 - Base Band Tune (BBQ) system for tune & coupling
 - Optimisation of gains & time constants
 - Head-tail system for chromaticity
 - Verification of chromaticity with dp/p variation
 - \rightarrow Commission chirp excitation using the transverse damper
 - Allows faster rep rate if required
 - \rightarrow BBQ system + chirp generation
 - will replace BOSC as Standard Tune measurement for SPS in 2006
 - All hardware & analysis software should therefore be operational in the LHC as soon as we have beam

Tune, Chromaticity & Coupling


- PLL tune tracking (US-LARP)
 - \rightarrow Also based on BBQ acquisition
 - Separate system from standard kicked tune system
 - \rightarrow Set-up in parallel to single kick
 - Requires dedicated kicker BQK (if installed) or Damper

Question:Do we go all out for tune and coupling feedbacks?If so, then this is the time to commission them


Coupling control is critical for orbit & tune feedbacks

Spending some time here to commission these systems early on may significantly reduce the time required for ramp development

Coupling Feedback at RHIC (2006)

Tune & Coupling Feedback at RHIC (2006)

LHCCWG, April 2005 - Rhodri Jones (CERN - AB/BI)

Feedback using the PLL tune system

- Tune feedback requirements
 - \rightarrow Stable PLL tune measurement system
 - \rightarrow Knowledge of correction quad transfer functions
 - already known from initial tune corrections
 - \rightarrow Implementation of feedback controller
- Coupling feedback requirements
 - \rightarrow Stable PLL tune measurement system
 - \rightarrow Knowledge of skew quad transfer functions
 - \rightarrow Implementation of feedback controller
- Chromaticity feedback requirements
 - \rightarrow Stable PLL tune measurement system
 - \rightarrow RF frequency modulation

All of these will require dedicated beam time for testing the control loop response and the final closing of the loop.

Measuring Beam Size at 450GeV

- Wire Scanners (BWS)
 - \rightarrow Operational
- Synchrotron light monitor (BSRT)
 - \rightarrow Requires undulator to be ON
 - \rightarrow Cross calibration with wirescanner
 - Requires "stable" beams
- Ionisation profile monitor (BGI)
 - → Verification of bump closure of BGI compensators
 - Should be negligible even at 450GeV
 - \rightarrow Requires pressure bump for pilot bunches if nominal vacuum
 - \rightarrow Cross calibration with wirescanner
 - Requires "stable" beams

Abort Gap Monitor (BSRA)

- Requirement detect at 10% of quench level
 - At 450GeV : detection of 4×10^9 charges/100ns within 100 ms
 - At 7TeV : detection of 6×10^6 charges/100ns within 100 ms
- Protons
 - → Gated photomultiplier will look at synchrotron light using same light source as synchrotron light monitor
 - Either gated over entire 3µs abort gap or in 30, 100ns time slots
 - → Single pilot bunch will allow verification and calibration of photon production to proton number
 - Estimate ~300 photons / 100ns / turn at 450Gev
 - → May require tunnel intervention to change light splitting ratio between BSRT and BSRA
 - \rightarrow Should be commissioned before we increase intensity
 - Check of threshold
 - Check of timing
 - Check of interlock (BIC?)