

- The Roman Pots
- The position during data taking
- The control and interlocks
- The commissioning
- Summary

The TOTEM experiment

The Roman Pot Module

- Three measurement pots : two verticals and one horizontal
- Integrated beam position monitor
- Interconnection bellow between horizontal and vertical pots
- Vacuum compensation system interconnected to the machine vacuum
- Individual stepper motors to drive the pots
- Adjustable jacks to align the RP unit in the tunnel
- Designed by TS/MME

The Roman Pot Module

The Roman Pots at 220 m

The Roman Pots at 147 m

The window and the detector assembly

Silicon sensor

The Roman Pot position during data taking

Closest approach of detector to beam center (f=0):

 $h(t) = \delta + c + t + f + s(t) + 10\sigma = 10\sigma + \le 450 \ \mu m$

- δ = 47 µm insensitive area
- $c = 200 \ \mu m$ distance to window
- $t = 150 \ \mu m$ window thickness
- $s(t) = < 50 \ \mu m \ flatness$

f = window displacement in case of vacuum loss (= $50 \mu m$ at 100 mbar).

Some parameter measurements

The Roman Pots Motor Control

- CCA: <u>Central Collimation Application in CCC</u>,
 - Controls fully the Roman pot settings,
 - When STABLE_BEAM is reached Roman pots can move to a new limit agreed between TOTEM and the LHC,
 - All settings and modifications of the Roman Pot position are done from the CCC through the CCA on request of TOTEM.
- CSS: <u>C</u>ollimator <u>S</u>upervisory <u>System</u>,
 - Is the interface between CCA and the Low Level Control,
 - Is the standard version used for the collimation with some adaptation,
 - The PC gateway is located in USC55,
 - A new position request by TOTEM is transmitted through the CSS to the Low Level Control.

Low Level Control: • Moves

- Moves the Roman Pots to the requested position,
- Reads the LVDTs with 100 Hz,
- Sends a signal in case the Roman Pots exceed the position limit (\rightarrow CIBU 1).

Rules: • Safety first,

- Copy as much as possible the Collimator Control.
- Procedures:
 Agree on the ultimate limit and store it in the data base in the CCA,
 - Once the beam is stable correct this limit with the BPM values,
 - Control the LVDT and resolver values,
 - Compare the LVDT values with the limit,
 - In case the limit is exceeded \rightarrow beam dump

Before injection: • Roman Pots in the retracted position, i. e. at the end switch,

• LVDT value zero (for instance)

After injection: • Wait for stable beams,

- Approach the Roman Pots to the agreed position (more refined movement see later),
- In case of UNSTABLE_BEAM retract Roman Pots,
- In case LVDT value exceeds limit \rightarrow beam dump,
- In case of detector failures (CIBU 2) take necessary actions, either by retracting the Roman Pot(s) or by switching the detector power off.
- At IMMINENT_BEAM_ABORT retract Roman Pots.

Note: DEVICE_ALLOWED = STABLE_BEAM or UNSTABLE_BEAM

This pink block allows RP operation in UNSTABLE_BEAM mode via a manual override,

to allow common collimator + RP calibrations.

(Note: DEVICE_ALLOWED = STABLE_BEAM or UNSTABLE_BEAM)

Could we use the SAFE_BEAM flag instead of the manual OVERRIDE ? (I.e. is SAFE_BEAM intensity enough for Ralph's tests ?)

Before the LHC start:

- Finish cabling and piping with priority to the 220 m stations;
- Commission the motors and calibrate the LVDTs and the resolvers in sector 4-5 and 5-6;
- Install one assembly of 10 Si detectors in a horizontal pot in sector 4-5 end of June;
- Commission the C₃F₈ cooling;
- Install one assembly in a horizontal pot at 220 m in 5-6 in July;
- Install two assemblies in vertical pots at 220 m in 4-5 and 5-6 during a technical stop.
- Test the Interlocks.

After the LHC start:

- At stable beam start moving the pots (together with CCC):
 - Read the BPMs and verify with CCC the beam position;
 - Correct limit with BPM values;
 - Approach the pots by 35 mm (= safe position)
 - Move the horizontal pots nearer to the beam up to the agreed limit to see the diffractive peak verify the rates;
 - Move the vertical pots nearer to the beam such that the rates are equal in both pots (if they exist). Go to 10-15 σ from the beam center.
 - Compare RP rates with BLMs during these processes;
 - Compare beam position from rate information with BPMs;
 - If situation good for data taking set MOVEMENT_INHIBIT.
- Verify detector efficiency and trigger, DAQ, DCS etc.;
- If satisfactory take data.

TOTEM

Early Physics (1)

Measurement of elastic and diffractive protons

Hit distributions @ RP220

Detect the proton via:

its transverse momentum t_v (high β^*)

its momentum loss ξ (low β^*)

- TOTEM will install 2 Roman Pots in the horizontal position before LHC closure, 2 more in the vertical position during a technical stop.
- TOTEM will copy as much as possible the control of the collimators. This needs a close collaboration between TOTEM and the LHC.
- During 2008 TOTEM intends to take data for diffractive physics. With a common effort from LHC and TOTEM we will manage to get the Roman Pots to a safe position for the best physics.