

More Robust SPS Filling Scheme

LHCCWG December 4th 2007

M. Gruwé and E. Métral

Introduction:

- Why?
- What?

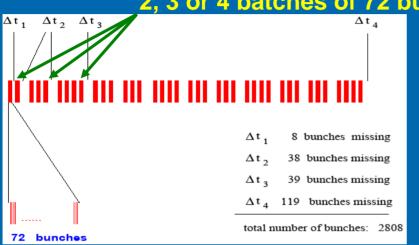
> MD results:

 Comparison of 4x72 bunches and 5x48 bunches filling schemes

Conclusions

≻ Extra:

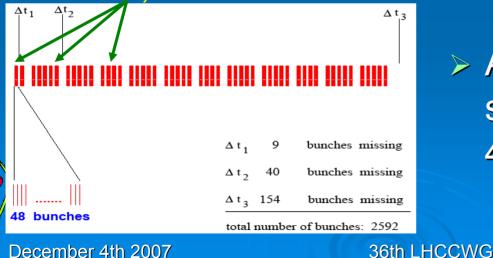
Nominal filling scheme with lower intensity



Why?

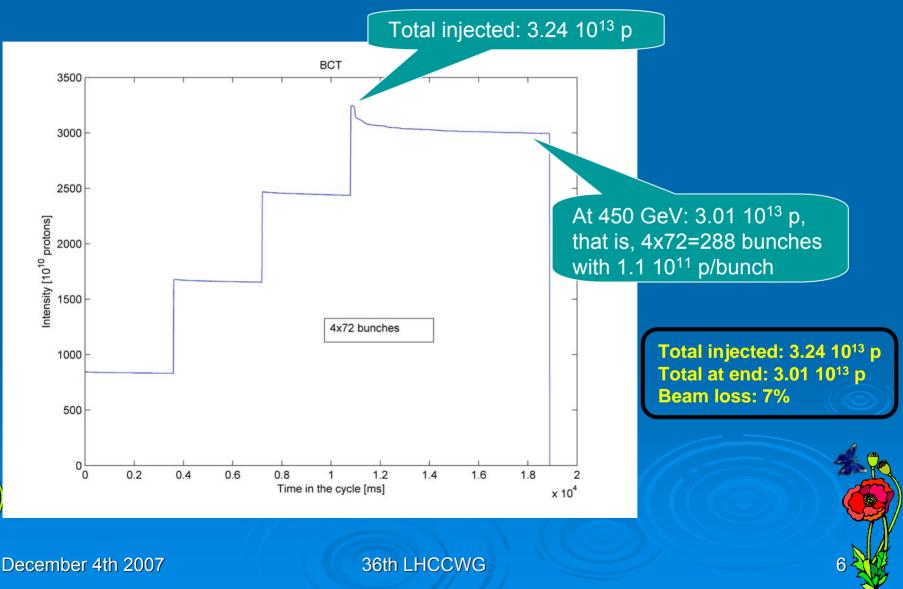
- During the whole of 2006, the LHC beam in the PS showed instabilities at extraction:
 - See
 - Presentation in 75th APC (December 15th 2006) by R. Steerenberg:
 - Observations of the high energy instability in the PS
 - Presentation in 20th LHCCWG (February 14th 2007) by E. Metral:
 - Implications for the injectors
 - Reason was the use of two cavities behaving differently (delivering different voltages for the same reference). Problem solved by recalibration.
 - Still: investigations started to find solution to such problems.
 - Proposed solutions:
 - Presentation in 75th APC (December 15th 2006) by H. Damerau:
 - Double step rotation bunch: <u>RF Gymnastics in the PS with the 40 and 80 MHz</u> <u>cavities</u>
 - Presentations in 20th LHCCWG (February 14th 2007) by E. Metral and W. Herr:
 - <u>Alternative filling schemes</u>
 - <u>Implications for the injectors</u>

December 4th 2007



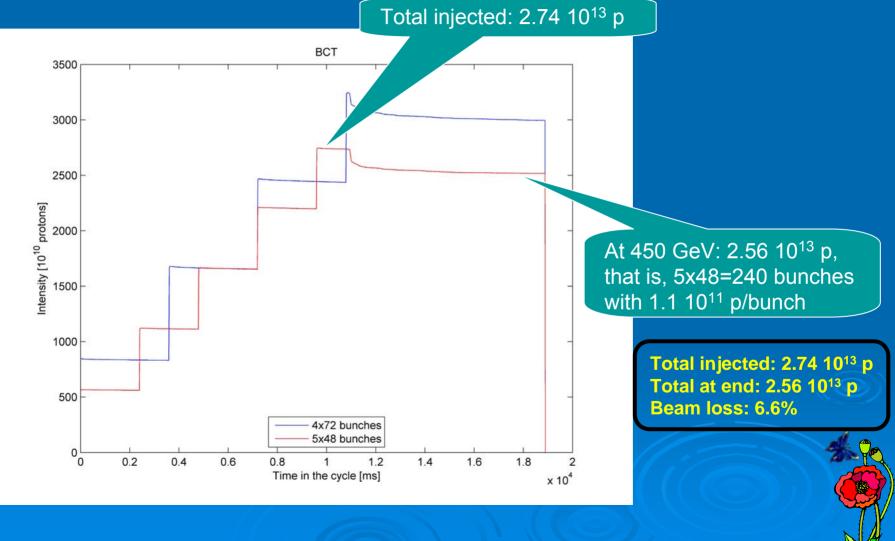
2, 3 or 4 batches of 72 bunches

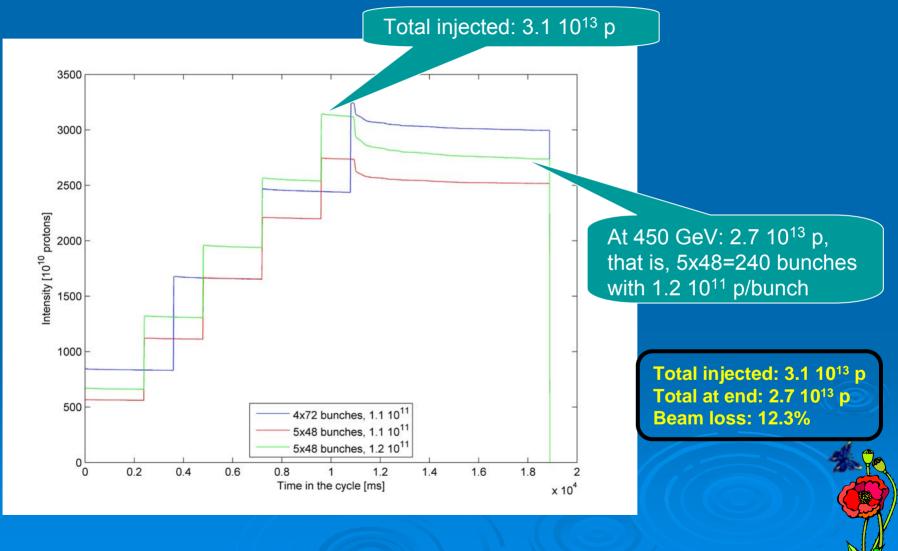
 Current bunch filling scheme: batches of 72 bunches



 Alternative filling scheme: batches of 48 bunches

SPS MD

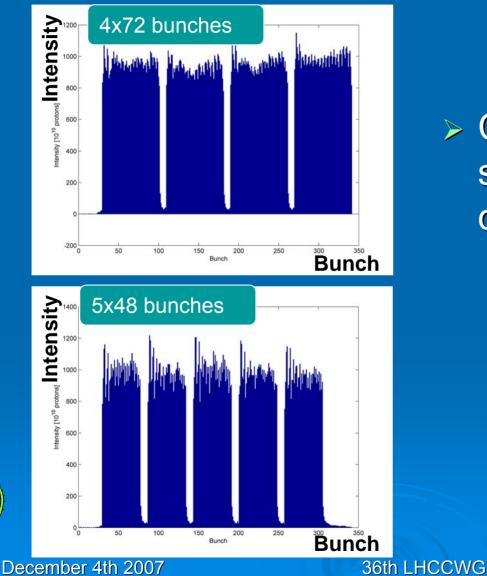

- > On October 17th-18th:
 - Comparison of the two SPS filling schemes:
 - 4 injections of 72 bunches
 - 5 injections of 48 bunches
 - Swap from one filling scheme to the other.
 - Same intensity per bunch
 - Same length of supercycle, no optimization.
 - Change only timings so that we can get 5 injections.
 - Note:
 - Intensity was ~1.1 10¹¹ p/bunch at end of flat top
 - 1.1 10¹¹ p/bunch == 10% lower than nominal
 - Expect 1.15 10¹¹ p/bunch in LHC, thus aim for ~1.2 10¹¹ p/bunch at end of SPS flat top
 - Therefore we have also looked at:
 - 5 injections of 48 bunches, with intensity ~1.2 10¹¹ p/bunch at end of flat top


5x48 bunches SPS BCT

December 4th 2007

5x48 bunches SPS BCT

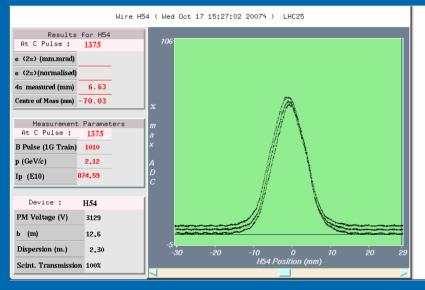
December 4th 2007


- Similar beam losses in case of 4x72 bunches scheme or 5x48 bunches scheme (with similar intensity per bunch):
 - About 7% loss between total injected in SPS and total at 450 GeV, for 1.1 10¹¹ p/bunch
- No comparison possible for higher (~ nominal) intensity per bunch:
 - Throughout the whole year, we have never managed to have 4x72 bunches with nominal intensity in SPS.
 - Due to abnormal outgassing of the dump kicker MKDV1
 - For 5x48 bunches, no problem. Beam loss is then about 12.3% between total injected in SPS and total at 450 GeV, for 1.2 10¹¹ p/bunch

December 4th 2007

 Checked if any significant/systematic difference in behavior:
None.

10


Emittances in SPS

4x72 bunches, 1.1 10¹¹ p/bunch: Wire scans: • $\varepsilon_x = 2.8 \text{ mm.mrad}$ vertical • $\varepsilon_v = 3.1 \text{ mm.mrad}$ Current bwsv51995.rot EV:0x21a70301 SC:3020 HV:980 Mode:LHC 3ba 3ga 18/10/07 02:54:20 IN profile -17080.0 Position(um) Ctime 18502 ms Mean -6.652 mm 5x48 bunches, 1.1 10¹¹ p/bunch: Sigma 0.416 mm Norm 25166 Ampl 2343 Offst 69 cq.length 939 • $\varepsilon_x = 2.9 \text{ mm.mrad}$ • $\varepsilon_v = 3.0 \text{ mm.mrad}$ Da -1.70e+04 0.00 dv 2132.53 Cu -1.70e+04 2132.53 pl ft IN 5x48 bunches, 1.2 10¹¹p/bunch horizontal ε_x = 3.2 mm.mrad • $\varepsilon_v = 3.4 \text{ mm.mrad}$ Current bwsh51995.rot EV:0x21a70301 SC:3029 HV:980 Mode:LHC 3ba 3ga 18/10/07 02:57:36 IN profile -5589 091 Ctime 18505 ms Mean -0.891 mm Siama 0.701 mm Norm 21671 Ampl 1145 For same bunch intensity, Offst 69 Aca.lenath 910 similar emittances For nominal bunch intensity: Da 5293.26 16.000 dy 923.094 Cu 5355.23 939.094 pl pr IN emittances still in specifications

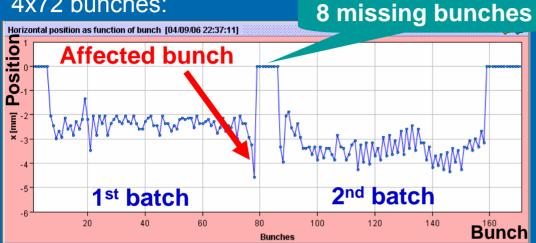
December 4th 2007

Emittances in PS

Wire scan:

72 bunches:

- Just after injection:
 - ε_H = 1.84 mm.mrad
 - $\varepsilon_V = 2.38$ mm.mrad
- At extraction: • $\epsilon_{H} = 2.87 \text{ mm.mrad}$ • $\epsilon_{V} = 2.35 \text{ mm.mrad}$


> 48 bunches:

- Just after injection:
 - $\epsilon_{\rm H}$ = 1.5 mm.mrad
 - $\cdot \epsilon_v = 2.4 \text{ mm.mrad}$
- At extraction:
 - $\epsilon_{\rm H} = 2.4 \text{ mm.mrad}$
 - $\epsilon_V = 2.45 \text{ mm.mrad}$

December 4th 2007

BPM readout

4x72 bunches:

5x48 bunches:

4x72 bunches:

- 8 missing bunches between two injected PS batches: 225 ns
- Not enough time available for the rise time of the injection kickers (really at the edge).
- One always hits either the • last bunch of the circulating batch or the first bunch of the injected bunch.

5x48 bunches:

- 9 missing bunches between two injected PS batches: 250 ns
- More time available for the rise time of the injection kickers
- Last bunch of circulating batch and first bunch of injected batch are not affected

December 4th 2007

36th LHCCWG

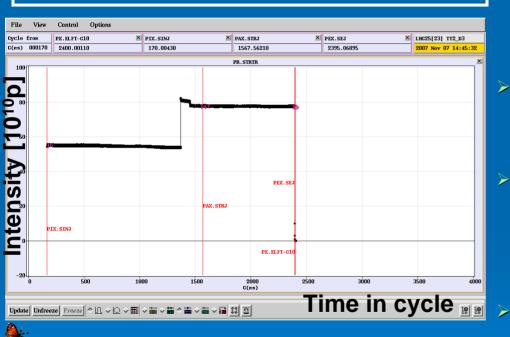
13

Conclusions (I)

- Note:
 - During the MD, going from 4x72 bunches to 5x48 bunches was very easy and done in a few minutes only.
- Differences of 5x48 filling scheme with respect to 4x72 filling scheme:
 - Intensity:
 - This year, we couldn't reach nominal intensity in SPS with 4x72 bunches.
 - But no problem with the 5x48 bunches scheme.
 - Emittances: similar (for similar bunch intensity)
 - More time for the ramp of the injection kickers
 - Instantaneous luminosity: lower by 8%
 - Shorter cycle:
 - PS:
 - PS cycle only 2 basic periods (2.4s), instead of 3 basic periods (3.6s).
 - Only one injection in PS: no waiting time after first injection: no loss at that stage no fine tuning on PS injection plateau (drift of magnetic field, etc...)
 - SPS cycle could be reduced to 20.4s (instead of 21.6s)
 - Shorter LHC filling time

December 4th 2007

Conclusions (II)


- > Main reason for suggesting the alternative filling scheme was the instabilities at extraction in the PS.
 - Instabilities at extraction in PS have been solved now (were due to mis-calibrated cavity).
 - Even if instabilities would appear again, a solution has been studied: double step bunch rotation.
- > Other problems/instabilities might still occur in the injector chain... in which case we could use the alternative filling scheme as a backup solution
- Possibly, use this scheme as part of the beam commissioning, before the nominal 2808 bunches (2592 bunches), in case of problems.
- > Note:

For steps in beam commissioning: consider the nominal filling scheme (with batches of 72 bunches), but with lower intensity bunches

See next slide...

LHC25 with lower intensity

For steps in beam commissioning: nominal filling scheme, but with lower intensity bunches

- The intensity on LHC25 cycle has been decreased in the PS Booster by a factor of ~ 10 (factor of 5 from the sieve and factor of 2 from the vertical shavers).
- Small optimizations were required in both longitudinal and transverse planes.
- Transverse emittances (rms, norm):
 - 1.9 and 1.3 micrometers near extraction
 - Note that tails larger than for the Gaussian are observed

Nominal 72 bunches beam can easily be provided with 10 times lower intensity