

- LAYOUT
- FESA
- (MAD)
- LSA CONTROLS
- MEASUREMENT
- LOGGING

Layout database

The LHC Reference Database is designed to store all data pertaining to the collider, its components, their layout, their manufacturing as a large unified tool.

Samy CHEMLI and team

It covers

Beam Instrumentation Collimators and Aperture Limiters, Cryomagnets and Warm Magnets, Distribution Feed Boxes and Current Leads, Injection and Beam Dumps, Power Converters, RF System, Vacuum Cables and Cable Trays, Cooling and Ventilation, Electronic racks, **Tunnel Cryogenic System** Monorail. Space Reserved for Alignment, Space Reserved for Transport, Steel Structures, Tunnel Geometry (floor height, local geometry, drain covers).

It is source number 1

	#	DFB_ID	DFB_NAME	DFB_DCUM_START	DFB_DCUM_END	MAG_ID	MAG_NAME	MAG_POSITI
Þ	1	104672	DFBXB.3R1	54.882	57.972	282235	MCSSX.3R1	53.8
	2	104673	DFBAB.7R1	256.109	258.784	377905	MQM.A7R1	260.0
	3	104674	DFBAC.7L2	3073.0654	3075.2404	249981	MCBCH.7L2.B1	3071.52
	4	104675	DFBXC.3L2	3274.6254	3277.4784	242834	MCBXA.3L2	3278.23
	5	104676	DFBXD.3R2	3387.2424	3390.0954	282241	MCSSX.3R2	3386.19
	6	104677	DFBAD.7R2	3588.9804	3591.6554	242887	MQM.A7R2	3592.87
	7	104678	DFBAE.7L3	6403.5618	6405.7368	250544	MCBCH.7L3.B2	6402.04
	8	104679	DFBAF.7R3	6923.2048	6925.8798	243817	MQ.7R3	6927.34
	9	104680	DFBAG.7L4	9734.1362	9736.3112	251060	MCBCH.7L4.B1	9732.60
	10	104681	DFBAH.7R4	10257.3512	10260.0262	244758	MQM.7R4	10261.37
	11	104682	DFBAI.7L5	13070.6576	13072.8326	251581	MCBCH.7L5.B2	13069.11
	12	104683	DFBXE.3L5	13271.4696	13274.5596	245664	MCBXA.3L5	13275.32
	13	104684	DFBXF.3R5	13384.3236	13387.4136	282247	MCSSX.3R5	13383.27
	14	104685	DFBAJ.7R5	13585.5506	13588.2256	245714	MQM.A7R5	13589.44
	15	104686	DFBAK.5L6	16402.292	16404.467	246592	MCS.A8L6.B1	16391.9
	16	104687	DFBAL.5R6	16928.542	16931.217	252144	MCO.8R6.B1	16931.5
	17	104688	DFBAM.7L7	19733.0034	19735.1784	252653	MCBCH.7L7.B2	19731.48
	18	104689	DFBAN.7R7	20252.6464	20255.3214	247569	MQ.7R7	20256.79
	19	104690	DFBAO.7L8	23067.2278	23069.4028	253169	MCBCH.7L8.B1	23065.68
	20	104691	DFBXG.3L8	23257.5678	23260.4208	248484	MCBXA.3L8	23261.18
	21	104692	DFBXH.3R8	23370.1848	23373.0378	282253	MCSSX.3R8	23369.14
	22	104693	DFBAP.7R8	23583.1428	23585.8178	248536	MQM.A7R8	23587.03
	23	104694	DFBAA.7L1	26400.0992	26402.2742	378137	MCBCH.7L1.B2	26398.55
	24	104695	DFBXA.3L1	26600.9112	26604.0012	249435	MCBXA.3L1	26604.78
	25	351243	DFBMC.5L2	3162.7645	3165.0595	242815	MQY.A5L2	3163.33
Ĩ	20	054044	000044-010	2404-0244	2402.0004	2 (2020	HOVERIA	2400 oc

	INTO BETWEEN		VALUES TO NUMBER							
	User Objects All Objects DictObjects									
	CUNHIGURATIUNDBVIEW FUH LHCLAYUUT.CUNHIGURATIUNDBVIEW CONTROL_SLOT_SYSTEMS FOR LHCLAYOUT.CONTROL_SLOT_SYSTEMS CONTROL_SLOT_SYSTEMS_CO_FEC FOR LHCLAYOUT.CONTROL_SLOT_SYSTEMS_CO_FEC CONTROL_SLOT_SYSTEM_MEMBERS FOR LHCLAYOUT.CONTROL_SLOT_SYSTEM_MEMBERS CONTROL_SUOT_SYSTEM_MEMBERS FOR LHCLAYOUT.CONTROL_SLOT_SYSTEM_MEMBERS CONTROL_SUOT_SYSTEM_MEMBERS CONTROL_SUOT_SYSTEM_S CONTROL_SUOT_SYSTEM_S CONTROL_SUOT_SYSTEM_S CONTROL_SUOT_SYSTEM_S CONTROL_SUOT_SYSTEM_S CONTROL_SUOT_SYSTEM CONTROL_SUOT_SYSTEM S CONTROL_SUOT_SYSTEM S CONTROL_SUOT_SYSTEM S CONTROL_SUOT_SYSTEM CONTROL_SUOT_SYSTEM S CONTROL_SUOT_SYSTEM S CONTROL_SUOT_SYSTEM S CONTROL_SYSTEM S CONTROL SYSTEM S CONTROL_SYSTEM S CONTROL									
	CONDUCATE_STSTEMS FOR LIFLATUDT.COONDINATE_STSTEMS CRY0_ET200_MODULE_SIGNALS FOR LIFLAYOUT.CRY0_ET20_MODULE_SIGNALS CRY0_PLC_CONFIG_ALL FOR LIFLAYOUT.CRY0_PLC_CONFIG_ALL									
	 DFB_DFL_CIRCUITS FOR LHCLAYOUT.DFB_DFL_CIRCUITS DFB_MAGNETS FOR LHCLAYOUT.DFB_MAGNETS 									
	ELECIMP_ENERGYEXTRACTION FOR LHCLAYOUT.ELECIMP_ENERGYEXTRACTION ELECIMP_MAD_STRENGTH_CORR FOR LHCLAYOUT.ELECIMP_MAD_STRENGTH_CORR ELECIMP_PB_ALL FOR LHCLAYOUT.ELECIMP_PB_ALL ELECIMP_CFOR LHCLAYOUT.ELECIMP_PC ELECIMP_QPS FOR LHCLAYOUT.ELECIMP_QPS ELEC_CABLES_CABLOTHEQUE_CPY FOR LHCLAYOUT.ELEC_CABLES_CABLOTHEQUE_CPY ELEC_CABLES_CABLOTHEQUE_CPY ELEC_CABLES_CABLES_CABLOTHEQUE_CPY ELEC_CABLES_CABLES_CABLOTHEQUE_CPY ELEC_CABLES_CABLES_CABLES_CABLES_CABLES_CABLES_CABLES ELEC_CABLES_CABLES_CABLES_CABLES ELEC_CABLES_CABLES_CABLES_CABLES ELEC_CABLES_CABLES_CABLES_CABLES ELEC_C									
					40					
	#	Name	Туре							
	01 02 03 04 05 06 07 08 09 10 11 12 13	DFB_ID DFB_NAME DFB_DCUM_START DFB_DCUM_END MAG_NAME MAG_NAME MAG_POSITION MAG_ANCHOR VERSION DFB_U DFB_V MAG_U MAG_V	NUMBER(10) VARCHAR2(30) NUMBER(15,6) NUMBER(15,6) NUMBER(15,6) NUMBER(15,6) VARCHAR2(30) NUMBER(15,6) NUMBER(15,6) NUMBER(15,6) NUMBER(15,6)							

The source of all FESA devices and their properties.

- MAD sequences defined on the layout database
- Use MAD output for element configuration our side
- Perl looping over MAD executions and uploading optics to database

LSA overview

Few Important Concepts

Dependent parameters

From Physics to Hardware Parameters

Incorporation Rules

Make Rules

Link Rules

SPS Ring

IncorporatingLinkRule Brho2CurrMakeRule Momentum2CurrMakeRule Brho2MomentumMakeRule NestedPowerConvertersMakeRule **LEIRMainsLinkRule** BrhoDotGen2DepMakeRule **NoOperationMakeRule** LinkBuilder SimpleAdvanceMakeRule BrhoGen2DepMakeRule LinkData SPSDamperGain2Digital Bucket2TotalMakeRule Linker Cn2KMakeRule **MULTPLinkRule** SPSKnob2KMakeRule CNGSK2CurrMakeRule **SEXLinkRule** SPSRF200PartitionMakeRule **SIXPLinkRule** Curr2cnMakeRule SPSRF800PhaseMakeRule ECK2CurrMakeRule SPSRINGK2CurrMakeRule SPSMainsDegaussLinkRule FED2ECKMakeRule Syfreq2NoiceCenterFreq **SPSMainsLinkRule G2IMakeRule** Total2DegreeMakeRule **SPSRingLinkRule** GenerateMakeRule Total2StablePhase SPSTransferIminZeroLinkRule K2CurrCalculator Total2SyPeriodMakeRule **SPSTransferLinkRule** Total2VoltageMakeRule K2CurrMakeRule **THREEPLinkRule TripletMakeRule** Knob2KMakeRule **TI8CNGSLinkRule** Landau2KMakeRule **UseSourceMakeRule TI8LHCLinkRule** LEIRAdvanceMakeRule ConstantLinkRule **TWOPLinkRule** LEIRCouple2KMakeRule CrunchLinks LEIREddy2006MakeRule **DEGAUSSLinkRule** LEIREddyMakeRule Delay LEIRK2CurrMakeRule ExtractionLinkRule EIRK2CurrWithEddyMakerule **FOURPLinkRule** LEIRKnob2KMakeRule **GIGOLinkRule**

13-10-06

Data Model

- ~ 120 tables
- Many iterations
- Years of experience and experimentations
- Fruitful collaboration with CO/DM
- Strong asset

Ack: Chris Roderick

Database configuration is key

Rough Domain Breakdown

- Context configuration
- Optics
- Device/property configuration
- Parameter configuration
- Settings and trims
- Rules: make, link, incorporation

Core Software

- Configuration and Optics
- Settings management
 - Operational, Critical and Expert
- Trim
- Settings Generation
- Exploitation
- Others Services

Modular

ARCHITECTURE

MEASUREMENT DB

Ronny Billen & Team

Measurement database

- Basically a holding pen for the logging database
- Up to 7 days data
- Filter and reduce before transfer to logging database

Logging

- Dedicated database cluster (+1.5 Tbyte of disk space) on the production database LHCLOGDB.
- The LHC Logging Service is based on a 3-tier architecture; 2 machines are used to host the Application Server (middle) tier: ABJAS4 (a PC) and ABOFS1 (a Proliant HP), both with the Oracle Application Server installed and configured. In both AS, the dedicated OC4J containers "LHCLogging" are deployed
- Our clients implement an XML schema or use the Data Input API to submit their logging data to the service (as well as the meta data). This data loading chain is fully operational and in production, the Data Loading application on ABJAS4 takes care of the parsing and loading process.
- For Data Extraction, the web-deployed TIMBER interface allows users to get to selected logged variables, show them graphically and extract in file format.

Ronny Billen & Team

Conclusions

- Off-line databases feeding...
- LSA on-line
 - Well-developed data model which aims to be the sole repository for on-line control data
- Measurements and Logging in place
 These are not a panacea