

# $\beta$ -Beating, dispersion and coupling correction in the LHC

R. Tomás, R. Calaga, O. Bruning, S. Fartoukh, M. Giovannozzi, Y. Papaphilippou & F. Zimmermann LHCCWG-14<sup>th</sup> of June, 2006

 $\beta$ -Beating, dispersion and coupling correction in the LHC – p.1/25

#### **Magnetic measurements and allocation**

- Realistic assessment of the beta-beating correction needs of realistic b2 errors in the machine
- Magnetic measurements available in official databases
- Information on both magnetic measurements plus slot allocation (MEB activity) are required
- A code was developed in AT/MAS-MA by P. Hagen, J.-P. Koutchouk & E. Todesco. This code deals with all type of magnetic errors (multipoles)
- Output: MAD-X file with magnetic errors. In case a magnet is already assigned to a certain slot its magnetic errors are assigned to this slot. Otherwise, errors are drawn from measured distributions.

#### $\beta$ -beating observable

- The measurement of  $\beta$ -functions needs good BPM calibration or good knowledge of focusing properties  $\rightarrow$  Not suitable for commissioning
- Phase advance between nearby BPMs is a robust observable independent of BPM calibration, offset and tilt and focusing errors, thus phase-beating:

$$\Delta \phi_{n+1} = \phi_{n+1}^{meas} - \phi_n^{meas} - (\phi_{n+1}^{mod} - \phi_n^{mod})$$

- $\phi_n^{meas}$  is measured with standard FFT or SVD techniques of kicked data
- Synergy with J. Wenninger's LOCO?

 $\phi$ -beating Vs  $\beta$ -beating



Rogelio Tomás García

#### **Dispersion observable**

- Dispersion is normally measured using radial steering and BPM readings.
- Best BPM calibration error:  $\pm 4\%$  (LHC-BPM-ES-0004)
- BPM resolution (pilot bunch):  $200\mu m$
- Specification on Dispersion [Rep. 501]:

$$\left|\frac{\Delta D}{\sqrt{\beta_x}}\right| < 0.013\sqrt{m}, \qquad \left|\frac{\Delta D}{D}\right|_{QF} < 30\%,$$

• In [EPAC 02, F. Zimmermann et al.] the pilot bunch BPM resolution was not enough to measure dispersion in the range  $\delta = \pm 5 \ 10^{-4}$ 

#### $\beta$ -beating & dispersion correction

• We compute the non-square matrix **R** from ideal MADX model as

$$(\vec{\Delta \phi}, \vec{\Delta D}, \Delta Q_x, \Delta Q_y) = \mathbf{R} \vec{\Delta k_1}$$

k<sub>1</sub> are all quad circuits in MADX (210 per ring).
we invert **R** using the SVD so the correction is

 $\vec{\Delta k_1} = -\mathbf{R}^{-1}(w_\phi \vec{\Delta \phi}, w_D \vec{\Delta D}, \Delta Q_x, \Delta Q_y)$ 

 $w_{\phi,D}$  are weights used to choose beta-beating or dispersion correction.

- However correction is not guaranteed
- Simulations are needed to prove correction and to assess performance.

Rogelio Tomás García

### Simulation ingredients I

 $b_2$  example

• All  $b_2$ ,  $a_2$ ,  $b_3$ , ... errors from measurements:



#### not really Gaussian not centered

- Extra Gaussian noise of 5 units added to quad  $b_2$
- rms misalignments of chromaticity sextupoles,  $\sigma_{x,y} = 2$ mm
- rms misalignments of MCS,  $\sigma_{x,y} = 0.5$ mm

#### Simulation ingredients II

- Gaussian noise, σ<sub>φ</sub>, added to the MADX phase to account for error measurements. σ<sub>φ</sub> depends on BPM noise (σ<sub>noise</sub> = 200µm), decoherence time (N=400 turns) and kick amplitude (a=4 mm).
- From tracking simulations the error on the phase:



To be on the pessimistic side we take  $\sigma_{\phi} = 0.25^{\circ}$ . Beating, dispersion and coupling correction in the LHC - p.8/25

Rogelio Tomás García

## $\beta$ -beating correction ( $w_D = 0$ )



 $\rightarrow \beta$ -beating correction works!  $\rightarrow$  Best peak corrections in the 5% level

#### What happens to dispersion? $(w_D = 0)$



 $\rightarrow$  Dispersion remains unchanged (better than not considering dispersion at all)

#### Not considering dispersion (old $b_2$ table)



 $\rightarrow$  Dispersion gets spoiled

 $\rightarrow \beta$ -beating correction must consider dispersion

#### **Comparing dispersion to specs.** $(w_D = 0)$



 $\rightarrow$  Peak specification is met for most of the seeds but not the case for the rms specification.

#### Strengths of quadrupoles $(w_D = 0)$ I



 $\rightarrow$  Variation in the percent level with respect to nominal setting at injection

#### **Strengths of quadrupoles (** $w_D = 0$ **) II**



Rogelio Tomás García

 $\beta$ -Beating, dispersion and coupling correction in the LHC – p.14/25

#### **Can we correct dispersion only?** $(w_{\phi} = 0)$



 $\rightarrow$  Some seeds' dispersion-beating not correctable!  $\rightarrow$  Probably due to misuse of Q[7-7], to be clarified



- A robust global coupling correction is presented at: R. Jones et al, CERN-AB-2005-083 BDI0
- Local coupling is also measurable from the secondary spectral lines of BPM data around the ring:

$$f_{1001} = \frac{1}{2} \sqrt{\frac{H(0,1)}{V(0,1)}} \frac{V(1,0)}{H(1,0)}$$

- Independent of BPM calibration errors and succesfully used at SPS and RHIC.
- What about LHC? The BPM data comes for free with the  $\beta$ -beat correction

#### Local coupling measurement simulation

Random quad tilts and rms orbit are assumed plus a large tilt error (15mrad) at  $\approx$ 6km. BPM resolution=200 $\mu$ m, BPM tilts=2mrad, 400 turns.



 $\rightarrow$  Measurable under realistic conditions

### Local coupling correction

#### Using all the skew quadrupole correctors:



 $\rightarrow$  Satisfactory local correction  $\rightarrow$  Not perfect due to the particular distribution of errors/correctors. Best local correction is realignment



- Required facilities: BPM system in turn-by-turn mode (good synchronization is crucial)
- How long does it take?
   5 iterations are enough for β-beat correction. An iteration consists of: Data acquisition, analysis, change quad strenghts and probably injection and chromaticity re-optimization.
- Who will do it?
   Studies: I am very interested
   Software applications: Also interested but resources needed (LARP, KEK?)
   Commissioning: Again, I am very interested in taking part

#### **Conclusions & outlook**

- β-beat correction can be achieved without spoiling dispersion-beat
- Dispersion-beat correction does not seem robust yet
- Important coupling sources identifiable from the same BPM data used for  $\beta$ -beat

### **Gaussian errors:** $\beta$ **-beat**



#### **Gaussian errors: Dispersion-beat**



#### **Illustration of** $\beta$ **-beat at the BPMs**



#### **Illustration of phase-beat at the BPMs**



# **Measurement of** $f_{1001}$

